PATHway: Decision Support in Exercise Programmes for Cardiac Rehabilitation

Dimitris Filosa, Andreas Triantafyllidisa, Ioanna Chouvardaa, Roselien Buysb, Véronique Cornelissenb, Deirdre Walshc, Werner Budtsb, Catherine Woodsc, Kieran Moranc and Nicos Maglaverasa

a Centre for Research and Technology Hellas, Institute of Applied Biosciences, Greece
b Katholieke Universiteit Leuven, Research Group for Cardiovascular and Respiratory Rehabilitation, Belgium
c The Insight Center for Data Analytics and School of Health and Human Performance, Dublin City University, Ireland

•www.pathway2health.eu
DSS – Design cycles

- Requirements gathering
 - Standard clinical recommendations and guidelines
 - Empirical knowledge

- Rules formulation
 - Coding of the requirements
 - Deterministic rules in the format of condition-action (IF-THEN)

- Review rules
 - By the clinical expert

- DSS implementation
 - Rules programming
 - Data representation
 - Development of communication interfaces

www.pathway2health.eu
DSS components

Home DSS (short-term decisions)

• Prescreening
 – Check the patients’ health status before starting an exercise session

• Real-time
 – Adjust the exercise session according to the patients’ performance
 – Motivation

Off-line DSS (long-term decisions)

• Evaluation of the whole exercise session
• Personalization of the CR programme according to patient performance, compliance and preferences
• Motivation

www.pathway2health.eu
<table>
<thead>
<tr>
<th>Rule Description</th>
<th>Condition</th>
<th>DSS action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescreening</td>
<td>Rule for checking if the patient didn’t eat during the last 4 hours AND vital signs measurements are OK</td>
<td>If answer to question about eating during the last 4 hours, is NO AND systolic BP<180 AND HRrest <75% HRmax</td>
</tr>
<tr>
<td>Real-time</td>
<td>Rule for progressing to an exercise with higher intensity</td>
<td>If accuracy is medium/high AND [(HRmean<B) OR (HRmean>B AND HRmean<C AND slope<W1) OR (HRmean>C AND HRmean<D AND slope<W1)]</td>
</tr>
<tr>
<td>Offline</td>
<td>Rule for excluding specific exercise when HR value is high for more than 3 consecutive appearances of the exercise.</td>
<td>If exercise consecutive appearances >= 3 AND mean HRmean>F for the aforementioned sessions</td>
</tr>
<tr>
<td>Offline</td>
<td>Rule to motivate patient when he/she is on track to meet the weekly goal near week’s end</td>
<td>If (time is end of day 5 of the weekly exercise programme) AND SUM (session_durations) > 50% of weekly physical activity goal</td>
</tr>
</tbody>
</table>
DSS architecture

• Using Python programming language
 – multiplatform
 – rapid prototyping
 – good performance

• RESTful web-service with specific end-points
 – Service Oriented Architecture
 – Built using web.py python library
 – Synchronous communication

• JSON serialization
 – Input validation using JSON schema

www.pathway2health.eu
Home DSS prototype implementation

• Example rule for progression to an exercise with higher intensity

Input JSON object

```json
{"targetHRzone": {"high": 90, "low": 70}, "exerciseCumulativeAccuracy": 0.65, "targetAcczone": {"high": 0.7, "low": 0.5}, "vitalSigns": {"hr": [65, 62, 64] }}
```

DSS response

```json
{"result": "progression", "description": "While you performed the exercise correctly, your heart rate is still low. Let's move one level up now!"}
```

<table>
<thead>
<tr>
<th>Hear Rate</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>NORMAL</td>
<td>MEDIUM</td>
</tr>
<tr>
<td>HIGH</td>
<td>HIGH</td>
</tr>
</tbody>
</table>
Home DSS Rules Evaluation Study

- **Target:** 15 CVD patients, 45 exercise sessions by **July 15th**
 - 10 patients have already been recruited (18th May)

- **Environment:**
 - 3 Public Gyms
 - Sessions monitored during standard exercise programmes for people with CVD conducted together with **specialised trainer**

- **Data collection:**
 - **Motion** (Microsoft Kinect camera)
 - **Heart rate** (Scosche wristband sensor)
 - **ECG, Breathing Rate, Activity** (Zephyr BioHarness)
 - **Resting Heart Rate, Blood Pressure**
 - **Questionnaires** (pre-screening, enjoyment, RPE, etc.)

- **Data Processing:**
 - Processing of Motion Recordings
 - Evaluation of Rules based on Accuracy, Heart Rate Intensity & other collected data

www.pathway2health.eu
Home DSS Rules Evaluation Study

Goal: Check the validity of the rules

- Which is the accuracy/HR variability when performing the same exercise in different time frames?
 - How to extract the accuracy zones (low/medium/high)?
 - How to calculate personalized parameters?

- How patients’ heart rate/accuracy varies during the execution of different activities?

- Which is the association between the answers to the exertion/enjoyment questionnaire and the observed characteristics (accuracy/HR)?

- When to exclude an exercise from the patient’s exercise programme?
Home DSS Rules Evaluation Study

Wristband
HR sensor
ECG, Breathing Rate & Activity Chest strap

Wristband
HR sensor
ECG, Breathing Rate & Activity Chest strap

Kinect camera
Markers for motion recognition

Laptop & smartphone for collection of recordings

www.pathway2health.eu
Future work

– Prediction of compliance

– Tailoring of health behavior goals
 • associate health, psychological, behavioral, and social activity data to provide patients with personalised information

– Evaluation by clinical experts in a 6-month randomised controlled trial with CVD patients

www.pathway2health.eu
Follow us

www.PATHway2health.eu

@PATHway_H2020

@PATHwayProjectH2020

info@pathway2health.eu
Thank you

Hospital partners:

Dr Andreas Triantafyllidis
Email: atriand@certh.gr

Co-funded by the H2020 framework Programme of the European Union
Grant Agreement No 643491